

VEHICLE AERODYNAMICS AND AEROACOUSTICS

KNOW-HOW IN THEORY, MEASURING TECHNIQUE AND TESTING

11 - 13 June 2024

Lecturer: Dr.-Ing. Daniel Stoll, IFS, University of Stuttgart

COURSE OUTLINE

Module 1: Basis of Vehicle Aerodynamics

- Physical principles and basic equations of aerodynamics
- Aerodynamic forces, moments and coefficients
- Drag components
- Influence of vehicle design and vehicle parts on drag and lift
- Influence of drag and lift on vehicle performance

Module 2: Aeroacoustics

- Physical basics of acoustics
- Acoustic measurement techniques
- Acoustic analysis procedures
- Physics of aeroacoustics
- Test and measurement setup
- Main sources in aeroacoustics
- Noise reduction techniques
- Psychoacoustic aspects incl. unsteadiness

Module 3: Numerical Methods

Basics of computational fluid dynamics (CFD)

- Common codes used for CFD
- CFD-application on particular flow situations
- Basics of computational aeroacoustics (CAA)
- Calculation of aeroacoustically effective turbulent fluctuations
- Calculation of sound sources as well as sound transmission

Module 4: Aerodynamic Testing and Measuring Techniques

- Aerodynamic measuring techniques
- Wind tunnel types
- Specific wind tunnel effects
- Comparison of road and wind tunnel situation
- Full road simulation in wind tunnel
- Measuring pressures and velocities in wind tunnel flows
- Methods for flow visualization

Module 5: Aeroacoustic Practical Training

- Aeroacoustic measurement and analysis techniques
- Evaluation of various aeroacoustic weak spots of the test vehicle (measurement and analysis)
- Psychoacoustic analysis and rating
- Subjective listening in the vehicle compartment

Module 6: Aerodynamic Practical Training

- Testing procedures and cycles in aerodynamic wind tunnels
- Influence of vehicle design and vehicle parts on drag and lift
- Wind tunnel set up for full road simulation
- Wind tunnel correction methods
- Measurement of wheel ventilation drag

Contact: academy@fkfs.de

Module 7: Introduction to Soiling

Measurements

- Wind tunnel set up for soiling tests
- Different types of soiling
- Qualitative and quantitative assessment of vehicle soiling
- Possibly visit of thermal wind tunnel

Module 8: Active Aerodynamics

- Potentials and challenges
- Aerodynamics and design
- Effects on driving dynamics and range
- Examples and different features

More information: fkfs-veranstaltungen.de

Contact: academy@fkfs.de

DRIVING DYNAMICS

KNOW-HOW IN THEORY, MEASURING TECHNIQUE AND TESTING

16 - 17 July 2024

Lecturer: Prof. Dr.-Ing. Andreas Wagner, FKFS & IFS University of Stuttgart

COURSE OUTLINE

Module 1: Module 2: **Basics of Driving Dynamics Advanced Driving Dynamics** Basic tire properties Key characteristics and driving dynamics • Vehicle motion in the road plane DNA • Basic driving dynamics characteristics Property based development / systems • Roll & pitch motion / vertical dynamics engineering Suspension properties • Influence of aerodynamics Handling performance versus driving • Influence of drivetrain electrification

Module 3: Driving Dynamics Characterization

comfort

- Measuring equipment and vehicle sensors
- Objective characterization
- Road testing
- Rig testing
- Data analysis
- Model parameterization

Module 4: Driving Simulation and Autonomous Driving

Dynamics with all-wheel steering

Driving-simulator basics

Active chassis systems

- Simulation framework
- Driving dynamics testing in simulators
- Front-loading chassis concepts
- Enabler for automated vehicles
- Scenario design

Module 5: Practical Training - Stuttgart Driving Simulator

- Practical introduction
 - Scenario
 - Model implementation
- Workshop
 - All-wheel steering strategy
 - Suspension setup

Module 6: Practical Training - Stuttgart **Handling Roadway**

- Practical introduction
 - Basic setup and operation
 - Customizing rig control
- Workshop
 - Lateral dynamics characterization
 - Vertical dynamics characterization
 - o All-wheel steering calibration

More information: fkfs-veranstaltungen.de

Contact: academy@fkfs.de

ELECTRIFICATION OF MOBILITY I - MOTIVATION, TECHNOLOGY OUTLOOK, AND MARKETS

Date: 22 July 2024

Lecturer: Prof. Giorgio Rizzoni, The Ohio State University

COURSE OUTLINE

Part 1: Electrification of Mobility

Part 2: Powertrain electrification – Electric Drive Systems

- History of e-mobility
- Energy considerations
 - o Primary energy sources
 - Well-to-tank energy and emissions analysis – electricity and nonpetroleum based fuels are not necessarily carbon-free
- Vehicle energy use and regulatory environment
- Understanding vehicle energy consumption
- Impact of electrification
- Some observations on world vehicle markets
- Challenges an dopportunitities

Part 3: Powertrain electrification – Energy Storage Systems

- Basic definitions, including energy and power density and cycle life
- Lithium-ion batteries state of the art and current challenges
- Li-ion cell formats and performance characteristics
- Materials for Li-ion cells current and future directions
- Battery pack design and system integration
- Charging systems
- Battery life and lifecycle
- Market and supply chain considerations

- Introduction to electric drive system
- Properties of traction motors and motor controllers
 Basic principles of operation
 Types of electric machines and power converters
- Torque speed curves and efficiency
- Example of electric drive systems for xEVs

More information: fkfs-veranstaltungen.de

Contact: academy@fkfs.de

ELECTRIFICATION OF MOBILITY II -

INTRODUCTION TO ELECTRIC DRIVE AND ENERGY STORAGE SYSTEMS

Date: 23-24 July 2024

Lecturer: Prof. Giorgio Rizzoni, The Ohio State University

COURSE OUTLINE

DAY 1: ELECTRIC DRIVETRAINS AND VEHICLE PERFORMANCE

Part 1: Electric machines and power converters

Basic operating characteristics of electric machines

- DC machines
- AC Machines operating principles
- AC Induction machines
- Permanent Magnet Synchronous Machines
- Basic introduction and operating principles of electric drives
- DC vs AC machines and performance and efficiency characteristics of electric drives
- Electronic Power conversion principles: DC-AC and DC-DC conversion
- Control of electric drives

Part 3: Q& A

DAY 2:

Part 1: Energy Storage Systems

Introduction

- Introduction to energy storage systems for automotive applications
- Notation and definitions
- Overview of li-ion battery technology: operating principles, properties of electrode materials, state of the art, materials for nextgeneration cells
- Battery cell modeling

Part 2: Electrified Drivetrain Architectures and system concepts

- BEV architectures
- Regenerative braking
- Drive Quality
- Traction control, stability control and torque vectoring in BEVs

Part 2: BEV laboratory, with focus on battery performance

The course closes with a laboratory in which the participants will explore the simulated performance of a BEV using a simulator that is capable of simulating many important aspects of a battery electric vehicle including battery electrical and thermal management, power limits, SOC estimation and other important functions.

Contact: academy@fkfs.de

Contact: academy@fkfs.de

Battery systems

- System integration principles for modules and packs
- Battery Management Systems and state of charge and power estimation
- Thermal Management Systems (TMS), solutions for passive and active cooling
- Battery charging standards, service equipment. Principle of charge control and balancing
- Definition of State of Health (SOH) and Residual Useful Life (RUL)
- Test protocols to characterize degradation in cells

Part 3: Q& A

Contact: academy@fkfs.de

HYDROGEN FOR MOBILITY - MOTIVATION, TECHNOLOGY OUTLOOK, AND MARKETS

25 July 2024

Lecturer: Prof. André Casal Kulzer, IFS University of Stuttgart

& Hans-Jürgen Berner, FKFS Stuttgart

COURSE OUTLINE	
Introduction	Production
 Hydrogen properties (thermodynamical/chemical) Comparison with other energy carriers (molecular/electro-chemical) Regulation regarding sustainable mobility Hydrogen in mobile applications 	 Production methods Electrolysis Hydrogen as a strategic secondary energy source
Storage & Transportation	Fuel Cell Electric Vehicles (FCEV)
 Storage types & storage losses Hydrogen carriers Infrastructure Applications 	 FCEV architecture Fuel cell types Balance of plant Operation strategies Thermal Management Applications Potential and limitations
Internal Combustion Engine Vehicles (ICEV)	Life Cycle Analysis & Technology Assessment
 ICEV architecture Special requirements using hydrogen Operation strategies Exhaust gas aftertreatment Applications Potential and limitations 	 Definition Tools and assumptions Assessment of various mobility concepts regarding LCA and cost Hydrogen in future mobility concepts