

FKFS Academy

ELECTRIFICATION OF MOBILITY

Lecturer: Prof. Giorgio Rizzoni, The Ohio State University

COURSE OUTLINE

DAY 1:

Module 1: Electrification of Mobility

- History of e-mobility
 - Energy considerations
 - Primary energy sources
 - Well-to-tank energy and emissions analysis – electricity and nonpetroleum-based fuels are not necessarily carbon-free
- Vehicle energy use and regulatory environment
- Understanding vehicle energy consumption
- Impact of electrification
- Some observations on world vehicle markets

Module 3: Electric Machines, Electric Drives

and Power Converters

- Basic operating characteristics of electric machines
- DC machines
- AC Machines operating principles
- AC Induction machines
- Permanent Magnet Synchronous
 Machines
- Basic introduction and operating principles of Power Converters
- Control of electric drives
- Introduction to Modeling and Design of Electric Drives and Power Converters

Module 2: xEV architectures

- Benefits of electrification
- xEV architectures
- HEV and PHEV development over the past 25 years; case study: the Toyota Hybrid Systems
- BEV Architectures
- Regenerative Braking

DAY 2:

Module 1: Introduction to Energy Storage Systems

- Introduction to energy storage systems for automotive applications
- Notation and definitions
- Overview of li-ion battery technology: operating principles, properties of electrode materials, state of the art, materials for next-generation cells
- Battery cell modeling
- System integration principles for modules and packs
- Battery Management Systems (BMS), state of charge, power and health estimation, balancing, other safety and protection features
- Thermal Management Systems (TMS), solutions for passive and active cooling
- Battery charging standards, service equipment
- Battery life: State of Health (SoH) and Residual Useful Life (RUL)
- Test Protocols to Characterize Degradation in Cells

Module 3: Electric Propulsion Technology in

Motorsports

- A little history of electric motorsports, from 1899 to 1999
- Electric land speed records
- xEV technology in motorsports today

Module 2: Introduction to Energy Management Systems

- Review energy management concepts for hybrid electric powertrains
- Introduce principles of optimal control, including Dynamic Programming, the Minimum Principle, and Equivalent Consumption Minimization Strategy (ECMS)
- Case studies and design and calibration of optimal energy management strategies with emissions, battery aging and drive quality contraints

DAY 3 (HALF DAY): COMPUTATIONAL LABORATORY

Module 1: BEV laboratory, with focus on	
regenerative braking	

The day starts with a laboratory in which the participants will explore the simulated performance of a BEV using a simulator that is capable of simulating many important aspects of a battery electric vehicle including regenerative braking. Demonstrations and exercises in simulation focus on understanding the interaction of electromechanical regenerative braking with friction braking, with consideration of braking performance, energy recuperation and vehicle stability.

Module 2: HEV laboratory, with focus on optimal energy management

The course closes with a laboratory in which the participants will use a detailed simulation model of a PHEV to explore the design and calibration of energy management strategies. Matlab/Simulinkbased code will be provided to the participants.

HYDROGEN FOR MOBILITY – MOTIVATION & TECHNOLOGY OUTLOOK

Lecturer: Prof. André Casal Kulzer, IFS University of Stuttgart

& Hans-Jürgen Berner, FKFS Stuttgart

COURSE OUTLINE

Introduction	Production
 Hydrogen properties (thermodynamical/chemical) Comparison with other energy carriers (molecular/electro-chemical) Regulation regarding sustainable mobility Hydrogen in mobile applications 	 Production methods Electrolysis Hydrogen as a strategic secondary energy source
Storage & Transportation	Fuel Cell Electric Vehicles (FCEV)
 Storage types & storage losses Hydrogen carriers Infrastructure Applications 	 FCEV Architecture Fuel Cell Types Balance of Plant Operation strategies Thermal Management Applications Potential and limitations
Internal Combustion Engine Vehicles (ICEV)	Life Cycle Analysis & Technology Assessment
 ICEV architecture Special requirements using hydrogen Operation strategies Exhaust gas aftertreatment Applications Potential and limitations 	 Definition Tools and assumptions Assessment of various mobility concepts regarding LCA and cost Hydrogen in future mobility concepts

VEHICLE AERODYNAMICS AND AEROACOUSTICS

KNOW-HOW IN THEORY, MEASURING TECHNIQUE AND TESTING

Lecturer: Dr.-Ing. Daniel Stoll, IFS, University of Stuttgart

COURSE OUTLINE

Module 1: Basis of Vehicle Aerodynamics	Module 2: Aeroacoustics
 Physical principles and basic equations of aerodynamics Aerodynamic forces, moments and coefficients Drag components Influence of vehicle design and vehicle parts on drag and lift Influence of drag and lift on vehicle performance 	 Physical basics of acoustics Acoustic measurement techniques Acoustic analysis procedures Physics of aeroacoustics Test and measurement setup Main sources in aeroacoustics Noise reduction techniques Psychoacoustic aspects incl. unsteadiness
Module 3: Numerical Methods	Module 4: Aerodynamic Testing and
	Measuring Techniques
 Basics of computational fluid dynamics (CFD) Common codes used for CFD CFD-application on particular flow situations Basics of computational aeroacoustics (CAA) Calculation of aeroacoustically effective turbulent fluctuations Calculation of sound sources as well as sound transmission 	 Aerodynamic measuring techniques Wind tunnel types Specific wind tunnel effects Comparison of road and wind tunnel situation Full road simulation in wind tunnel Measuring pressures and velocities in wind tunnel flows Methods for flow visualization
Module 5: Aeroacoustic Practical Training	Module 6: Aerodynamic Practical Training
 Aeroacoustic measurement and analysis techniques Evaluation of various aeroacoustic weak spots of the test vehicle (measurement and analysis) Psychoacoustic analysis and rating Subjective listening in the vehicle compartment 	 Testing procedures and cycles in aerodynamic wind tunnels Influence of vehicle design and vehicle parts on drag and lift Wind tunnel set up for full road simulation Wind tunnel correction methods Measurement of wheel ventilation drag

Module 7: Introduction to Soiling

Measurements

- Wind tunnel set up for soiling tests
- Different types of soiling
- Qualitative and quantitative assessment of vehicle soiling
- Possibly visit of thermal wind tunnel

Module 8: Active Aerodynamics

- Potentials and challenges
- Aerodynamics and design
- Effects on driving dynamics and range
- Examples and different features